Двигатель 3s

S2 – кратковременный номинальный режим работы электродвигателя

График изменения мощности P на валу электродвигателя, момента M, потерь мощности ΔP и перегрева τ для кратковременного номинального режима работы S2.

Этот режим работы характеризуется чередованием периодов с неизменной нагрузкой с периодами отключения двигателя.

В этом режиме за время работы tр превышение температуры двигателя достигает τдоп, а за время отключения t электродвигатель остывает до температуры окружающей среды. Если в этом режиме использовать электродвигатель, рассчитанный на длительный режим работы, то при кратковременном режиме работы в конце рабочего периода tр превышение температуры не достигает допустимого значения, то есть электрический двигатель будет недоиспользован по нагреву, а, следовательно, и по мощности. Для полного использования по нагреву двигатель необходимо перегрузить по мощности на валу. Другими словами, для кратковременного режима работы надо выбрать двигатель меньшей мощности. Чтобы количественного оценить перегрузку двигателя и его перегрев используются коэффициенты термической и механической перегрузок.

Коэффициентом термической перегрузки называется отношение потерь при кратковременном режиме работы к потерям при номинальном режиме работы.

pт = Δpкр/Δpн = (τустдоп)·(1 – e-t/Tн)

Коэффициент термической перегрузки изменяется по экспоненциальному закону.

Определяется коэффициент термической перегрузки с помощью зависимости коэффициента термической перегрузки от относительной продолжительности рабочего режима tр/Tн. В справочных данных приводятся универсальные зависимости коэффициентов термической и механической перегрузок.

Зависимости коэффициентов термической pт и механической pм перегрузок при кратковременном режиме работы электродвигателя от относительной длительности его рабочего периода tр/Tр.

Коэффициент механической перегрузки pм – отношение мощности при кратковременном режиме к мощности при номинальном.

pм = Pкр/Pн

Коэффициенты термической и механической перегрузки связаны между собой функцией:

pм = √pт

Коэффициенты механической и термической перегрузки зависят от отношения постоянных потерь к переменным потерям в номинальном режиме.

a = k/vн

Если из типовых характеристик определить коэффициент термической перегрузки при отношении рабочего времени к номинальному при tр/Tн = 0,4÷0,3, то он будет лежать в пределах pм = 2÷2,5.

Все электродвигатели рассчитываются на перегрузку по моменту в 2,5÷3 раза. Отсюда следует, что при отношении рабочего времени к нагреву tр/Tн = 0,3÷0,4 машина будет работать с допустимой перегрузкой.

Все части: | 2 |

Вакансии в Иваново

Перечень модификаций 2C

Модификаций силовой установки было огромное количество:

  • 2С-E — самая массовая версия двигателя, обладала мощностью в 74 лошадиные силы, имела механическое управление ТНВД;
  • 2C-T — Мотор обладал мощностью а 82-90 л.с., в зависимости от авто на котором был установлен, как и все представители серии 2C был оснащен турбонаддувом;
  • 2C-TE — двигатель мощностью 90 лошадиных сил, устанавливался только на Toyota Avensis;
  • 2C-TC — силовая установка развивающая мощность в 90 лошадиных сил, обладала разделенной камерой сгорания.


Дизельный агрегат с механическим управлением ТНВД установленный на Corolla

Какое масло лить в Yaris p1

Выбор моторного масла для 1SZ-FE (1,0 л), 1NZ-FE (1,5 л), 2NZ-FE (1,3 л)

Используйте масло по классификации API — не ниже SH или SJ

API система классификации моторных масел (API Engine Service Classification System) развивалась с 1969 года в результате совместной работы API, ASTM и SAE.

Система полностью изложена в стандартах ASTM D 4485 «Стандартная спецификация на качество эксплуатационных свойств моторных масел» (Standart Performance Specification for Performance of Engine Oils) и SAE J183 APR96 «Качество эксплуатационных свойств моторных масел и эксплуатационные классификации двигателей (за исключением энергосберегающих масел)» (Engine Oil Performance and Engine Service Classifications (Other than «Energy Conserving»). Новый качественный шаг в развитии качества и классификации моторных масел был сделан в 1983-1992 годах, когда под руководством API и участии представителей производителей автомобилей (ААМА), двигателей (ЕМА) и технических союзов (ASTM и SAE) была создана и развита «Система лицензирования и сертификации моторных масел EOLCS» (Engine Oil Licensing and Certification System, API Publication No. 1509). Эта система постоянно совершенствуется. В настоящее время аттестация моторных масел проводится согласно требованиям EOLCS и «Свода правил СМА» (СМА Code of Practice). По системе API (ASTM D 4485, SAE J183 APR96) установлены три эксплуатационные категории (три ряда) назначения и качества моторных масел:

S (Service) — состоит из категорий качества моторных масел для бензиновых двигателей, идущих в хронологическом порядке. Для каждой новой генерации присваивается дополнительная буква по алфавиту: API SA, API SB, API SC, API SD, API SE, API SF, API SG, API SH и API SJ (категория SI — намеренно пропущена API, для исключения путаницы с Международной системой мер).

Категории API SA, API SB, API SC, API SD, API SE, API SF, API SG на сегодняшний день признаны недействительными, как устаревшие, однако в некоторых странах масла этих категорий еще выпускаются, категория API SH является «условно действующей» и может использоваться только как дополнительная, например API CG-4/SH.

Класс SL введен только в 2001 г. и отличается от SJ существенно лучшими антиокислительными, противоизносными, противопенными свойствами, а также меньшей испаряемостью;

Характеристики I2S

Следующая диаграмма изображает три конфигурации, поддерживаемые I2S.

Рисунок 1 – Конфигурации, поддерживаемые интерфейсо I2S. Схема взята из спецификации I2S, впервые опубликованной Philips Semiconductors в 1986 году и обновленной в 1996 году.

Данные передаются по линии SD, состояние линии WS соответствует аудиоканалу (правый или левый), который передается в данный момент, а линия синхронизации SCK передает тактовый сигнал. Как видно из диаграммы, сигналы WS и SCK могут генерироваться передатчиком, приемником или сторонним контроллером.

Ниже перечислены характерные особенности трех сигналов интерфейса I2S.

Последовательные данные (SD)

  • При передаче цифровых значений в первую очередь передается старший бит слова (MSb).
  • У передатчика и приемника длина слова не должна быть согласована; передатчик отправляет то, что у него есть, а приемник берет то, что может использовать.
  • Выдача новых битов данных на передатчике может синхронизироваться либо по фронту, либо спаду тактового сигнала. Однако выборка их приемником должна быть синхронизирована по фронту, поэтому более простым подходом здесь является вариант, показанный на диаграмме ниже, то есть мы передаем данные по спаду тактового сигнала, и а их выборку приемником синхронизируем по фронту тактового сигнала.
  • Протокол не описывает неиспользуемые периоды времени между словами; за младшим битом (LSb) одного слова сразу же следует старший бит (MSb) следующего слова.

Выбор слова (WS)

  • Низкий логический уровень на WS указывает, что передаваемое в настоящее время слово является частью потока данных для левого аудиоканала; высокий логический уровень на WS указывает на передачу звука правого канала.
  • Чтобы облегчить обработку данных как на стороне передатчика, так и на стороне приемника, сигнал WS изменяет свое логическое состояние на один период тактового сигнала раньше завершения передачи слова данных:

Рисунок 2 – Диаграмма передачи данных по интерфейсу I2S. Схема взята из спецификации I2S.

Механизм и строение

Состав керамического BaTiO3 является совокупностью, составленной из микрокристаллов от 1 до 20 миллиметрового в диаметре. Этот микрокристалл называют частицей, и состоит из кристаллической структуры, которая показана на рис. 1 и 2. Частица разделена на много доменов при температуре ниже Точки Кюри. Кристаллические оси выровнены в одном направлении в пределах домена, таким образом, как и спонтанная поляризация. При нагревании до Точки Кюри и выше кристаллическая структура BaTiO3 изменяется от четырехугольной до кубической. Тогда, спонтанные поляризационные и доменные стены исчезают (пропадают).

Когда BaTiO3 находится в охлажденном состоянии (ниже Точки Кюри), ее кристаллическая структура поворачивается от кубической до четырехугольной, отрезки примерно до 1 % вдоль оси C и вдоль других осей – сокращаются. Тогда появляются спонтанные поляризационные и доменные стены. В то же время от воздействия «из вне» частицы искажаются. В этой стадии генерируются много мелких доменных стен, и направление спонтанной поляризации в каждом домене легко полностью изменить, даже малыми (низкими) электрическими полями. Так как диэлектрическая постоянная – пропорциональна сумме инверсии спонтанной поляризации к единице объема, наблюдается большая емкость.

Когда конденсаторы хранятся (применяются) без нагрузки при температурах ниже Точки Кюри размер беспорядочно ориентированных доменов становится большим, и они (домены) постепенно сдвигаются к устойчивому энергетическому состоянию (Рис. 3, 90 доменов). Это также облегчает сбор остаточного напряжения при кристаллическом искажении.

Кроме того, перемещение пространственных зарядов (ионы с низкой подвижностью, свободные точки кристаллической решетки и т.д.) в пределах доменной стены приводит к поляризации пространственного заряда. Эта поляризация пространственного заряда неблагоприятно воздействует на спонтанную поляризацию, преграждая ее инверсию.

Другими словами, временный переход от генерации спонтанной поляризации (спонтанная поляризация постепенно перестраивается к более устойчивому состоянию) к инверсии затруднена появлением поляризации пространственного заряда. В этом состоянии более высокое электрическое поле необходимо, чтобы полностью изменить спонтанную поляризацию в доменах, которые в свою очередь могут быть полностью изменены низким уменьшением электрического поля и снижениями емкости. Это, как полагают и есть механизм старения.

Однако, микротекстура кристаллической решетки возвращается в исходное состояние при нагревании до температуры выше Точки Кюри, в которой старение решетки начинается снова и снова. Вообще емкость многослойного керамического конденсатора с высокой диэлектрической постоянной уменьшается приблизительно линейно в логарифмическом масштабе времени – в течение 24 часов после термической обработки выше 125 C. Пожалуйста, обратитесь к прикрепленным типовым данным старения нашей продукции и номинальной емкости конденсаторов. Емкость, которая уменьшилась в результате естественного старения, имеет свойство восстанавливаться при нагревании конденсаторов до Точки Кюри и выше.

Ожидаемая емкость многослойного керамического конденсатора будет в его номинале, когда эти условия установлены на оборудовании. Мы выбираем свою амплитуду емкости, основанную на предшествующем предположении. Кстати, температура, компенсирующая значения типовых конденсаторов, не проявляют явление старения.

Керамические и стеклокерамические конденсаторы с твердым неорганическим диэлектрическим слоем выпускаются в высоковольтном и низковольтном исполнении. Отличаются компактными размерами и надежностью. Широко востребованы в вычислительной, бытовой, медицинской, военной техники, транспорте. По номинальному напряжению их разделяют на высоко- и низковольтные.

По типу конструкции выпускают следующие керамические конденсаторы:

  • КТК – трубчатые;
  • КДК – дисковые;
  • SMD – поверхностные и другие.

Для изготовления керамических конденсаторов используют не обожженную глину, а материалы, сходные с ней по структуре, – ультрафарфор, тиконд, ультрастеатит. Обкладка – серебряный слой. Керамические и стеклокерамические устройства используются в схемах, в которых важных частотные характеристики, невысокие потери при утечке, компактные габариты, невысокая стоимость.

Таблица электронных формул атомов химических элементов.

 /p>

Электронная конфигурация:

Электронная конфигурация – формула расположения электронов по различным электронным оболочкам атома химического элемента или молекулы.

Электронная конфигурация обычно записывается для атомов в их основном состоянии. Для определения электронной конфигурации элемента существуют следующие правила:

  1. Принцип заполнения. Согласно принципу заполнения, электроны в основном состоянии атома заполняют орбитали в последовательности повышения орбитальных энергетических уровней. Низшие по энергии орбитали всегда заполняются первыми.
  2. Принцип запрета Паули. Согласно этому принципу, на любой орбитали может находиться не более двух электронов и то лишь в том случае, если они имеют противоположные спины (неодинаковые спиновые числа).
  3. Правило Хунда. Согласно этому правилу, заполнение орбиталей одной подоболочки начинается одиночными электронами с параллельными (одинаковыми по знаку) спинами, и лишь после того, как одиночные электроны займут все орбитали, может происходить окончательное заполнение орбиталей парами электронов с противоположными спинами.

Достоинства и недостатки агрегатов 2C

Самые большие нарекания вызывает алюминиевая головка блока цилиндров. Трещины на ней — достаточно частое явление. При этом восстановить ее достаточно сложно, в большинстве автосервисов предлагают контрактные головки.

Двигатели 2C не обладают высокой мощностью, поэтому постоянно работают с большой нагрузкой, особенно на тяжелых микроавтобусах. По этой причине головка блока испытывает большие температурные перегрузки. Сам по себе перегрев не является причиной возникновения трещин. Проблема в локальном перепаде температур, что влечет за собой большие внутренние напряжения. В конечном итоге головка трескается.

К чему приводят трещины в головке

Ситуация усугубляется конструктивным просчетом, который присутствовал на моторах 1C и перешел к новому мотору по наследству. Расширительный бачок располагается в подкапотном пространстве ниже уровня головки. При нагреве мотора охлаждающая жидкость вытесняется в расширительный бачок. При охлаждении должно происходить обратное, жидкость должна вернуться в головку блока цилиндров.

На деле в головку вместе с охлаждающей жидкостью подсасывается воздух через негерметичную крышку заливной горловины радиатора. Воздух в системе постепенно накапливается, что в итоге приводит к деформации головки.

Турбина также охлаждается тосолом, при попадании воздуха охлаждение ухудшается. Масло в турбине перегревается, что вызывает масляное голодание и преждевременный выход турбины из строя. В некоторых случаях турбина не просто перестает нагнетать воздух, а забрасывает маслом впускной коллектор и двигатель идет вразнос.

Избавиться от воздуха в системе охлаждения можно простым путем, подняв расширительный бачок выше уровня головки. Но двигатель все равно останется термонагруженным.

Неприятной особенностью этих моторов является потеря компрессии в 3 и 4 цилиндрах. Виной тому негерметичная воздушная магистраль от фильтра к впускному коллектору. Пыль, перемешанная с маслом из трубки вентиляции картера, работает как абразив, под действием которого изнашиваются тарелки клапанов и поршневые кольца.

Иногда компрессия теряется из-за избытка сажи в системе рециркуляции выхлопных газов.

Из достоинств мотора отмечают только надежную работу ТНВД с механическим приводом. На версиях с электронным управлением ТНВД уменьшается расход топлива, снижается токсичность выхлопа, двигатель работает не так громко. Но такая система трудно регулируется. В большинстве сервисных станций отсутствует аппаратура для полноценной регулировки, мало специалистов. Несмотря на эти сложности, моторы с электронным ТНВД долговечнее.

Ситуация отягощается отсутствием комплектующих, Компания Denso прекратила поставки основных компонентов таких топливных насосов.

В целом отзывы о моторах Toyota 2C носят негативный характер. Агрегаты считаются ненадежными, недолговечными, их относят к числу худших моторов корпорации. Хотя на легких автомобилях, например, Тойота Карина, моторы при должном уходе и щадящей эксплуатации выхаживают до 300 тыс. км.

Комментарии

Мне нравится этот двигатель. Гоняет очень резво. Брал новую машину. Пока пробег 200 тыс., никаких существенных проблем не доставляет. Масло 0w30 mobil1, замена в 10тыс. фильтр- в 20тыс, через 10тыс продуть компрессором. Если долго не менять свечи (40тыс.) то сгорела катушка зажигания из-за большого зазора. Ремень ещё не менял, проверяю состояние и всё. Иногда при пуске стало слышно цепь. Видимо натяжитель нужно будет посмотреть. В мокрую погоду паразитный ролик издаёт какой-то скрежет или скрипы. Так было с новья. Как-то решил проверить – снял ролик, осмотрел, ничего подозрительного и до сих пор работает.

Виктор Гонтарь

Мне нравится этот двигатель. Гоняет очень резво. Брал новую машину. Пока пробег 200 тыс., никаких существенных проблем не доставляет.Масло 0w30 mobil1, замена в 10тыс. фильтр- в 20тыс, через 10тыс продуть…

Как вы проверяете состояние ремня? Автомехи говорят, на вид ничего нельзя понять.

Двигатели для Toyota Corona

Современная история двигателей для автомобилей этой модели начинается с 1973 года. Линейка силовых установок – одни из самых богатых среди всех моделей, когда-либо выпускавшихся подразделениями корпорации Toyota.

Марки-ровка Тип Объём, см 3 Максимальная мощность, кВт/л.с. Дополнительная информация
18R-G бензиновый 1998 107/143 DOHC
5R-LPG —:— 1994 79/107 OHV
5K-J —:— 1486 51/70 OHV
3A-U —:— 1452 51/70 SOHC
4A-GEU —:— 1587 96/130 DOHC
3T-EU —:— 1770 77/105 OHV, электронный впрыск
3T-GTEU —:— 1770 117/160 DOHC
2Y-P газовый 1812 58/70 LPG
2Y-PU —:— 1812 58/70 LPG
1S-U бензиновый 1832 74/100 OHC
18R-GEU —:— 1968 99/135 электронный впрыск
22R-E —:— 2366 78/105 SOHC, электронный впрыск
3A-LU бензиновый 1452 61/83 DOHC
1S —:— 1832 74/100 OHC
3S-GELU —:— 1998 118/160 DOHC
—:— 1974 53/72 SOHC
2C-L дизельный 1974 53/72 OHC, распределённый впрыск
3E бензиновый 1456 58/79 SOHC
5A-F —:— 1498 77/105 DOHC
5A-FE —:— 1498 77/105 DOHC
4A-FE —:— 1587 81/110 DOHC
1S-iLU —:— 1832 77/105 OHC, электронный впрыск
1S-ELU —:— 1832 85/115 OHC, электронный впрыск
4S-FE —:— 1838 85/115 DOHC
4S-FI —:— 1838 77/105 DOHC
3S-FE —:— 1998 88/120 DOHC
3S-GE —:— 1998 103/140 DOHC, Dual VVT-i
4A-GELU —:— 1587 96/130 DOHC
2C дизельный 1974 54/73 SOHC
5E-FE бензиновый 1496 77/105 DOHC
7A-FE —:— 1762 76/103 DOHC,Twin-cam
2C-III дизельный 1974 54/73 SOHC
3C-E —:— 2184 58/79 OHC
3S-GTE бензиновый с турбонаддувом 1998 136/185 распределённый впрыск, DOHC
2C-T дизельный с турбонаддувом 1974 65/88 OHC
3C-TE —:— 2184 69/94 —:—

До ввода в эксплуатацию машин 8-го поколения круг моделей, на которые ставились те же двигатели, что и на Toyota Corona, ограничивался несколькими наименованиями: Carina ED, Caldina, Corolla, Sprinter, Lite Ace, Town Ace, MR2, Corsa, Tercel, и некоторыми другими. С 1987 года силовые установки автомобилей трёх последующих поколений машин Тойота Корона стали последовательно оснащаться современными двигателями. Список сопредельных моделей резко вырос:

Двигатель 3S-FE 3S-GE 4A-FE 4S-FE 5A-FE
Altezza *
Avensis * *
Caldina * * *
Camry * * *
Carina * * * *
Carina E * * *
Carina ED * * *
Chaser *
Celica * * *
Corolla * *
Corolla Ceres * *
Corolla FX * *
Corolla Levin * *
Corolla Spacio *
Corona * * * * *
Corona Exiv * * *
Corona Premio * *
Corona SF * * *
Cresta *
Curren * * *
Gaia *
Ipsum *
Lite Ace Noah *
Mark II *
MR2 *
Nadia *
Picnic *
RAV4 * *
Sprinter * *
Sprinter Carib * *
Sprinter Marino * *
Sprinter Trueno *
Town Ace Noah *
Vista * * *
Vista Ardeo *
Всего: 21 13 15 12 9

Маркировка СМД (SMD) конденсаторов.

Размеры СМД конденсаторов невелики, поэтому маркировка их производится весьма лаконично. Рабочее напряжение нередко кодируется буквой(2-й и 3-й варианты на рисунке ниже) в соответствии с данными предоставленными в предидущем разделе. Номинальная емкость может кодироваться либо с помощью трехзначного цифрового кода(вариант 2 на рисунке), либо с использованием двухзначного буквенно-цифровой кода(вариант 1 на рисунке). При использовании последнего, на корпусе можно обнаружить таки две(а не одну букву) с одной цифрой(вариант 3 на рисунке).

Первая буква может является как кодом изготовителя(что не всегда интересно), так и указываеть на номинальное рабочее напряжение(более полезная информация), вторая — закодированным значением в пикоФарадах(мантиссой). Цифра — показатель степени(указывает сколько нулей необходимо добавить к мантиссе). Например EA3 может означать, что номинальное напряжение конденсатора 16в(E) а емкость — 1,0 *1000 = 1 нанофарада, BF5 соответсвенно, напряжение 6,3в(В), емкость — 1,6* 100000 = 0,1 микрофарад и.т.д.

1ZZ-FE

Довольно старый японский силовой агрегат с рабочим объемом 1.8 литра, который стали производить еще в 1997 году, однако его производство прекратили уже спустя 12 лет. Собирали преимущественно на заводе, который находился в Канаде. Его ставили не только под капот Авенсис, но еще Тойота Матрикс и Королла. Рядный силовой агрегат с четырьмя цилиндрами и 16-клапанной головкой блока цилиндров. Здесь установлен инжектор. Мощность от 120 до 145 «лошадок», а крутящий момент варьируется в пределах от 160 до 175 Нм – все зависит от настроек электронного блока управления. Мотор соответствует экологическим требованиям Евро-3 и успешно работает на 92-м топливе.

Блок цилиндров алюминиевый, а вот гильзы чугунные – типичная конструкция ДВС для того времени. Головка цилиндров получила два распределительных вала DHC, а вот гидрокомпенсаторы в ней отсутствуют. Поэтому водителю придется самостоятельно регулировать тепловые зазоры. Лучше всего это делать через каждые 80-90 тыс. км пробега. В 1999 году на впуск этого мотора поставили муфту VVT-i. Газораспределительный механизм работает посредством цепи ГРМ с ресурсом 150-180 тыс. км. Так как стояла задача облегчить двигатель, его оснастили открытой рубашкой охлаждения, установили небольшие T-образные поршни, получившие длинный ход, а также блок изготовили из легкосплавных материалов и установили картер отдельно.

Достоинства мотора:

  • чугунные гильзы (хон удерживается продолжительное время);
  • легко ремонтируется;
  • доступные запасные части и расходные материалы;
  • есть сервисы, которые берутся за его ремонт;
  • получил широкое распространение на вторичном рынке.

Есть ли недостатки у такого движка? В первую очередь ограниченный ресурс цепи ГРМ, которая не отхаживает заявленный изготовителем срок. Тонкие кольца – причина высокого расхода моторного масла. Плюс нет гидравлических компенсаторов. В общем, недостатки у 1.8-литрового 1ZZ-FE имеются. Однако это не говорит, что он вообще не надежен.

Просто необходимо быть готовым к борьбе со следующими недугами ДВС:

Высокий расход масла. Уже к пробегу 60 тыс. км на авто с таким мотором может начаться «масложор». Причина – тонкие маслосъемные кольца. Они быстро залегают

В 2005 году движок доработали, поставили новые МСК, поэтому выбирая авто на вторичном рынке, обращайте внимание на год производства мотора. Лучше всего покупать поздние версии мотора.
Цепь ГРМ быстро растягивается

Опять же, автомобилисты указывают, что в среднем срок службы цепи газораспределительного механизма составляет около 150-180 тыс. км, и никакие 200-250 тыс. км она не ходит, то есть, еще до капитального ремонта ее придется заменить, обойдется обслуживание движка в «копеечку».
Перегревы мотора. Алюминиевый блок нередко перегревается, что не лучшим образом сказывается на его состоянии и сроке службы. Система охлаждения здесь далеко не совершенная.
Мотор клинит. Двигатель может внезапно заклинить, если водитель не обнаружит своевременно низкий уровень моторного масла. Причина низкого уровня – моторное масло постоянно смешивается с топливом из-за залегших колец, что понижает его эксплуатационные свойства.
Постоянный мелкий ремонт. Будьте готовы к проведению на регулярной основе мелкого ремонта. Он может заключаться замене задней подушки ДВС, чистки или замене дроссельной заслонки, а также нужно самостоятельно регулировать клапаны.

Если говорить о конкретных цифрах вероятного пробега, то производитель заверит гарантированные 200 тыс. км. Но столько этот мотор не «ходит». Один из самых неудачных моторов Тойота, в частности для Тойота Авенсис.

Заключение

В высоковольтных цепях нередко применяют последовательное включение конденсаторов. Для выравнивания напряжений на них, необходимо параллельно каждому конденсатору дополнительно подключить резистор сопротивлением от 220 к0м до 1 МОм. Для защиты от помех, в цифровых устройствах применяется шунтирование по питанию с помощью пары – электролитический конденсатор большей емкости + слюдяной, либо керамический – меньшей. Электролитический конденсатор шунтирует низкочастотные помехи, а слюдяной( или керамический) – высокочастотные.

Источники

  • https://hmelectro.ru/article/markirovka-kondensatorov-tsifrovaya-tsvetnaya-eyo-rasshifrovka
  • https://encom74.ru/o-markirovke-kondensatorov-v-tc-keramiceskih-i-importnyh-rassifrovki-oboznacenij/
  • https://instanko.ru/elektroinstrument/markirovka-keramicheskih-kondensatorov-rasshifrovka-tablica.html
  • https://odinelectric.ru/equipment/electronic-components/kak-rasshifrovat-markirovku-kondensatora
  • https://ToolsTver.ru/processy/nominaly-keramicheskih-kondensatorov-tablica.html
  • https://ElectroInfo.net/kondensatory/kak-oboznachajutsja-kondensatory-na-sheme.html

Янв 25, 2021

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Авто в России
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: